My Blog List

What The Hack Is Quantum cryptography ??


According to Wikipedia

Quantum cryptography is the use of quantum mechanical properties to perform cryptographic tasks. The best known example of quantum cryptography is quantum key distribution which provides a solution to the breaking of various popular public-key encryption and signature schemes (e.g., RSA and ElGamal). The advantage of quantum cryptography lies in the fact that it allows the completion of various cryptographic tasks that are proven or conjectured to be impossible using only classical (i.e. non-quantum) communication (see below for examples). For example, It is impossible to copy data encoded in a quantum state and the very act of reading data encoded in a quantum state changes the state. This is used to detect eavesdropping in quantum key distribution.


What is Cryptography??

Privacy is paramount when communicating sensitive information, and humans have invented some unusual ways to encode their conversations. In World War II, for example, the Nazis created a bulky machine called the Enigma that resembles a typewriter on steroids. This machine created one of the most difficult ciphers (encoded messages) of the pre-computer age.
Even after Polish resistance fighters made knockoffs of the machines -- complete with instructions on how the Enigma worked -- decoding messages was still a constant struggle for the Allies [source: Cambridge University]. As the codes were deciphered, however, the secrets yielded by the Enigma machine were so helpful that many historians have credited the code breaking as a important factor in the Allies' victory in the war.
What the Enigma machine was used for is called cryptology. This is the process of encoding (cryptography) and decoding (cryptoanalysis) information or messages (called plaintext). All of these processes combined are cryptology. Until the 1990s, cryptology was based on algorithms -- a mathematical process or procedure. These algorithms are used in conjunction with a key, a collection of bits (usually numbers). Without the proper key, it's virtually impossible to decipher an encoded message, even if you know what algorithm to use.


Theme images by chuwy. Powered by Blogger.